3.162 \(\int \frac{(2+3 x^2) (3+5 x^2+x^4)^{3/2}}{x^7} \, dx\)

Optimal. Leaf size=127 \[ -\frac{\left (7 x^2+2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{6 x^6}-\frac{\left (67-32 x^2\right ) \sqrt{x^4+5 x^2+3}}{12 x^2}+\frac{49}{4} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-\frac{527 \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right )}{24 \sqrt{3}} \]

[Out]

-((67 - 32*x^2)*Sqrt[3 + 5*x^2 + x^4])/(12*x^2) - ((2 + 7*x^2)*(3 + 5*x^2 + x^4)^(3/2))/(6*x^6) + (49*ArcTanh[
(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/4 - (527*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])])/(24*S
qrt[3])

________________________________________________________________________________________

Rubi [A]  time = 0.106862, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {1251, 810, 812, 843, 621, 206, 724} \[ -\frac{\left (7 x^2+2\right ) \left (x^4+5 x^2+3\right )^{3/2}}{6 x^6}-\frac{\left (67-32 x^2\right ) \sqrt{x^4+5 x^2+3}}{12 x^2}+\frac{49}{4} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-\frac{527 \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right )}{24 \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^7,x]

[Out]

-((67 - 32*x^2)*Sqrt[3 + 5*x^2 + x^4])/(12*x^2) - ((2 + 7*x^2)*(3 + 5*x^2 + x^4)^(3/2))/(6*x^6) + (49*ArcTanh[
(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/4 - (527*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])])/(24*S
qrt[3])

Rule 1251

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 810

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*((d*g - e*f*(m + 2))*(c*d^2 - b*d*e + a*e^2) - d*p*(2*c*d - b*e)*(e*
f - d*g) - e*(g*(m + 1)*(c*d^2 - b*d*e + a*e^2) + p*(2*c*d - b*e)*(e*f - d*g))*x))/(e^2*(m + 1)*(m + 2)*(c*d^2
 - b*d*e + a*e^2)), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 2)*(a + b*x
+ c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) + b^2*e*(d*g*(p + 1) - e*f*(m + p + 2)) + b*(a*e^2*g*(m + 1)
 - c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2))) - c*(2*c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2)) - e*(2*a*e*g*(m + 1
) - b*(d*g*(m - 2*p) + e*f*(m + 2*p + 2))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*
c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 812

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + b*x + c*x^2)^p)/(e^2*(m + 1)*(m
+ 2*p + 2)), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (2+3 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{x^7} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(2+3 x) \left (3+5 x+x^2\right )^{3/2}}{x^4} \, dx,x,x^2\right )\\ &=-\frac{\left (2+7 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{6 x^6}-\frac{1}{24} \operatorname{Subst}\left (\int \frac{(-134-64 x) \sqrt{3+5 x+x^2}}{x^2} \, dx,x,x^2\right )\\ &=-\frac{\left (67-32 x^2\right ) \sqrt{3+5 x^2+x^4}}{12 x^2}-\frac{\left (2+7 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{6 x^6}+\frac{1}{48} \operatorname{Subst}\left (\int \frac{1054+588 x}{x \sqrt{3+5 x+x^2}} \, dx,x,x^2\right )\\ &=-\frac{\left (67-32 x^2\right ) \sqrt{3+5 x^2+x^4}}{12 x^2}-\frac{\left (2+7 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{6 x^6}+\frac{49}{4} \operatorname{Subst}\left (\int \frac{1}{\sqrt{3+5 x+x^2}} \, dx,x,x^2\right )+\frac{527}{24} \operatorname{Subst}\left (\int \frac{1}{x \sqrt{3+5 x+x^2}} \, dx,x,x^2\right )\\ &=-\frac{\left (67-32 x^2\right ) \sqrt{3+5 x^2+x^4}}{12 x^2}-\frac{\left (2+7 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{6 x^6}+\frac{49}{2} \operatorname{Subst}\left (\int \frac{1}{4-x^2} \, dx,x,\frac{5+2 x^2}{\sqrt{3+5 x^2+x^4}}\right )-\frac{527}{12} \operatorname{Subst}\left (\int \frac{1}{12-x^2} \, dx,x,\frac{6+5 x^2}{\sqrt{3+5 x^2+x^4}}\right )\\ &=-\frac{\left (67-32 x^2\right ) \sqrt{3+5 x^2+x^4}}{12 x^2}-\frac{\left (2+7 x^2\right ) \left (3+5 x^2+x^4\right )^{3/2}}{6 x^6}+\frac{49}{4} \tanh ^{-1}\left (\frac{5+2 x^2}{2 \sqrt{3+5 x^2+x^4}}\right )-\frac{527 \tanh ^{-1}\left (\frac{6+5 x^2}{2 \sqrt{3} \sqrt{3+5 x^2+x^4}}\right )}{24 \sqrt{3}}\\ \end{align*}

Mathematica [A]  time = 0.0515496, size = 107, normalized size = 0.84 \[ \frac{1}{72} \left (\frac{6 \sqrt{x^4+5 x^2+3} \left (18 x^6-141 x^4-62 x^2-12\right )}{x^6}+882 \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right )-527 \sqrt{3} \tanh ^{-1}\left (\frac{5 x^2+6}{2 \sqrt{3} \sqrt{x^4+5 x^2+3}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x^2)*(3 + 5*x^2 + x^4)^(3/2))/x^7,x]

[Out]

((6*Sqrt[3 + 5*x^2 + x^4]*(-12 - 62*x^2 - 141*x^4 + 18*x^6))/x^6 + 882*ArcTanh[(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 +
 x^4])] - 527*Sqrt[3]*ArcTanh[(6 + 5*x^2)/(2*Sqrt[3]*Sqrt[3 + 5*x^2 + x^4])])/72

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 117, normalized size = 0.9 \begin{align*}{\frac{3}{2}\sqrt{{x}^{4}+5\,{x}^{2}+3}}+{\frac{49}{4}\ln \left ({\frac{5}{2}}+{x}^{2}+\sqrt{{x}^{4}+5\,{x}^{2}+3} \right ) }-{\frac{47}{4\,{x}^{2}}\sqrt{{x}^{4}+5\,{x}^{2}+3}}-{\frac{527\,\sqrt{3}}{72}{\it Artanh} \left ({\frac{ \left ( 5\,{x}^{2}+6 \right ) \sqrt{3}}{6}{\frac{1}{\sqrt{{x}^{4}+5\,{x}^{2}+3}}}} \right ) }-{\frac{31}{6\,{x}^{4}}\sqrt{{x}^{4}+5\,{x}^{2}+3}}-{\frac{1}{{x}^{6}}\sqrt{{x}^{4}+5\,{x}^{2}+3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^7,x)

[Out]

3/2*(x^4+5*x^2+3)^(1/2)+49/4*ln(5/2+x^2+(x^4+5*x^2+3)^(1/2))-47/4*(x^4+5*x^2+3)^(1/2)/x^2-527/72*arctanh(1/6*(
5*x^2+6)*3^(1/2)/(x^4+5*x^2+3)^(1/2))*3^(1/2)-31/6*(x^4+5*x^2+3)^(1/2)/x^4-(x^4+5*x^2+3)^(1/2)/x^6

________________________________________________________________________________________

Maxima [A]  time = 1.49001, size = 208, normalized size = 1.64 \begin{align*} \frac{67}{36} \, \sqrt{x^{4} + 5 \, x^{2} + 3} x^{2} + \frac{11}{54} \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}} - \frac{527}{72} \, \sqrt{3} \log \left (\frac{2 \, \sqrt{3} \sqrt{x^{4} + 5 \, x^{2} + 3}}{x^{2}} + \frac{6}{x^{2}} + 5\right ) + \frac{431}{36} \, \sqrt{x^{4} + 5 \, x^{2} + 3} - \frac{79 \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}}{108 \, x^{2}} - \frac{11 \,{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{5}{2}}}{54 \, x^{4}} - \frac{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{5}{2}}}{9 \, x^{6}} + \frac{49}{4} \, \log \left (2 \, x^{2} + 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} + 5\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^7,x, algorithm="maxima")

[Out]

67/36*sqrt(x^4 + 5*x^2 + 3)*x^2 + 11/54*(x^4 + 5*x^2 + 3)^(3/2) - 527/72*sqrt(3)*log(2*sqrt(3)*sqrt(x^4 + 5*x^
2 + 3)/x^2 + 6/x^2 + 5) + 431/36*sqrt(x^4 + 5*x^2 + 3) - 79/108*(x^4 + 5*x^2 + 3)^(3/2)/x^2 - 11/54*(x^4 + 5*x
^2 + 3)^(5/2)/x^4 - 1/9*(x^4 + 5*x^2 + 3)^(5/2)/x^6 + 49/4*log(2*x^2 + 2*sqrt(x^4 + 5*x^2 + 3) + 5)

________________________________________________________________________________________

Fricas [A]  time = 1.31379, size = 321, normalized size = 2.53 \begin{align*} \frac{527 \, \sqrt{3} x^{6} \log \left (\frac{25 \, x^{2} - 2 \, \sqrt{3}{\left (5 \, x^{2} + 6\right )} - 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3}{\left (5 \, \sqrt{3} - 6\right )} + 30}{x^{2}}\right ) - 882 \, x^{6} \log \left (-2 \, x^{2} + 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} - 5\right ) - 711 \, x^{6} + 6 \,{\left (18 \, x^{6} - 141 \, x^{4} - 62 \, x^{2} - 12\right )} \sqrt{x^{4} + 5 \, x^{2} + 3}}{72 \, x^{6}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^7,x, algorithm="fricas")

[Out]

1/72*(527*sqrt(3)*x^6*log((25*x^2 - 2*sqrt(3)*(5*x^2 + 6) - 2*sqrt(x^4 + 5*x^2 + 3)*(5*sqrt(3) - 6) + 30)/x^2)
 - 882*x^6*log(-2*x^2 + 2*sqrt(x^4 + 5*x^2 + 3) - 5) - 711*x^6 + 6*(18*x^6 - 141*x^4 - 62*x^2 - 12)*sqrt(x^4 +
 5*x^2 + 3))/x^6

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (3 x^{2} + 2\right ) \left (x^{4} + 5 x^{2} + 3\right )^{\frac{3}{2}}}{x^{7}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5*x**2+3)**(3/2)/x**7,x)

[Out]

Integral((3*x**2 + 2)*(x**4 + 5*x**2 + 3)**(3/2)/x**7, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (x^{4} + 5 \, x^{2} + 3\right )}^{\frac{3}{2}}{\left (3 \, x^{2} + 2\right )}}{x^{7}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5*x^2+3)^(3/2)/x^7,x, algorithm="giac")

[Out]

integrate((x^4 + 5*x^2 + 3)^(3/2)*(3*x^2 + 2)/x^7, x)